Search results for "genetics [Contractile Proteins]"

showing 10 items of 3031 documents

Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents

2021

Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protoco…

0301 basic medicineMuscle tissuePathologymedicine.medical_specialtyStromal cellQH301-705.5PopulationMedicine (miscellaneous)telocytesGeneral Biochemistry Genetics and Molecular BiologyArticleCD117CD117; CD34; Exercise; Sedentary behavior; Skeletal muscle; Stem cell niche; Telocytes; Vimentin03 medical and health sciences0302 clinical medicinevimentinTibialis anterior muscleEndurance trainingsedentary behaviorMedicinestem cell nicheBiology (General)skeletal muscleeducationeducation.field_of_studyexercisebusiness.industrySkeletal musclemedicine.diseaseMuscle atrophy030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisSarcopeniaCD34medicine.symptombusinessBiomedicines
researchProduct

Targeted Drug Delivery in Plants: Enzyme‐Responsive Lignin Nanocarriers for the Curative Treatment of the Worldwide Grapevine Trunk Disease Esca

2019

Abstract Nanocarrier (NC)‐mediated drug delivery is widely researched in medicine but to date has not been used in agriculture. The first curative NC‐based treatment of the worldwide occurring grapevine trunk disease Esca, with more than 2 billion infected plants causing a loss yearly of $1.5 billion, is presented. To date, only repetitive spraying of fungicides is used to reduce chances of infection. This long‐term treatment against Esca uses minimal amounts of fungicide encapsulated in biobased and biodegradable lignin NCs. A single trunk injection of <10 mg fungicide results in curing of an infected plant. Only upon Esca infection, ligninolytic enzymes, secreted by the Esca‐associated fu…

plant protectionminiemulsionGeneral Chemical EngineeringGeneral Physics and AstronomyMedicine (miscellaneous)02 engineering and technologyBiology010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Toxicologychemistry.chemical_compoundLigninGeneral Materials Sciencegrapevine trunk diseasesVitis viniferalcsh:Scienceagriculture2. Zero hungerchemistry.chemical_classificationFull PapernanocarriersfungiGeneral Engineeringfood and beveragesFull Papers021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesFungicideEnzymechemistryTargeted drug deliveryCurative treatmentDrug deliverylcsh:QNanocarriers0210 nano-technology
researchProduct

Regulatory cytokine gene polymorphisms and risk of colorectal carcinoma.

2006

It is well established that cancer arises in chronically inflamed tissue, and this is particularly notable in the gastrointestinal tract. Classic examples include Helicobacter pylori-associated gastric cancer, hepatocellular carcinoma, and inflammatory bowel disease-associated colorectal cancer. Growing evidence suggests that these associations might be not casual findings. Focusing on individual cytokines has generated evidence that anti-inflammatory cytokine interleukin (IL)-10 and transforming growth factor-beta1 (TGF-beta1) may have a complex role in gastrointestinal carcinogenesis. As an example, IL-10-deficient mice develop severe atrophic gastritis and a chronic enterocolitis, develo…

gene polymorphismsMaleRiskProlineColorectal cancerAtrophic gastritisil-10colorectal cancerMouse model of colorectal and intestinal cancerBiologymedicine.disease_causePolymorphism Single NucleotideGeneral Biochemistry Genetics and Molecular BiologyMetastasisTransforming Growth Factor beta1colorectal cancercytokine genepolymorphismsHistory and Philosophy of ScienceGene FrequencyLeucineGenotypemedicineHumansGenetic Predisposition to DiseaseAllelesGeneral Neurosciencetgf-β1CarcinomaCancermedicine.diseaseInterleukin-10Amino Acid SubstitutionItalyTumor progressionCase-Control StudiesImmunologycolorectal cancer; gene polymorphisms; il-10; tgf-β1FemaleCarcinogenesisColorectal NeoplasmsAnnals of the New York Academy of Sciences
researchProduct

Estrogen Regulates the Satellite Cell Compartment in Females

2019

SUMMARY Skeletal muscle mass, strength, and regenerative capacity decline with age, with many measures showing a greater deterioration in females around the time estrogen levels decrease at menopause. Here, we show that estrogen deficiency severely compromises the maintenance of muscle stem cells (i.e., satellite cells) as well as impairs self-renewal and differentiation into muscle fibers. Mechanistically, by hormone replacement, use of a selective estrogen-receptor modulator (bazedoxifene), and conditional estrogen receptor knockout, we implicate 17β-estradiol and satellite cell expression of estrogen receptor α and show that estrogen signaling through this receptor is necessary to preven…

0301 basic medicineestrogeenitmedicine.medical_specialtyestradioliSatellite Cells Skeletal Musclemedicine.drug_classCellEstrogen receptorlihaksetBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleBazedoxifene03 medical and health sciencesMice0302 clinical medicineInternal medicineestradiolmedicineAnimalsHumansquiescenceskeletal muscleReceptorlcsh:QH301-705.5lihassolutsukupuolihormonitSkeletal muscleEstrogensmedicine.diseaseMenopause030104 developmental biologymedicine.anatomical_structureEndocrinologymuscle stem cellsikääntyminenlcsh:Biology (General)EstrogenFemaleStem cellovarian hormones030217 neurology & neurosurgeryhormones hormone substitutes and hormone antagonistsmedicine.drugCell reports
researchProduct

Usher syndrome: molecular links of pathogenesis, proteins and pathways.

2006

Contains fulltext : 50437.pdf (Publisher’s version ) (Closed access) Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in…

Genetics and epigenetic pathways of disease [NCMLS 6]Usher syndromeCell Cycle ProteinsNerve Tissue ProteinsBiologyRetinaAdherens junctionMiceHair Cells AuditoryCell polarityGeneticsmedicineotorhinolaryngologic diseasesNeurosensory disorders [UMCN 3.3]AnimalsHumansProtein IsoformsCell Cycle ProteinMolecular BiologyGenetics (clinical)Renal disorder [IGMD 9]Adaptor Proteins Signal TransducingStereociliumMembrane ProteinsSignal transducing adaptor proteinGeneral MedicineActin cytoskeletonmedicine.diseaseeye diseasesCell biologyCytoskeletal ProteinsGenetic defects of metabolism [UMCN 5.1]Ear InnerMultiprotein ComplexesCateninSynapsessense organsUsher SyndromesPhotoreceptor Cells Vertebrate
researchProduct

Short-Term Changes in Light Distortion in Orthokeratology Subjects

2015

Purpose. Quantifying adaptation to light distortion of subjects undergoing orthokeratology (OK) for myopia during the first month of treatment. Methods. Twenty-nine healthy volunteers (age: 22.34 ± 8.08 years) with mean spherical equivalent refractive error −2.10 ± 0.93D were evaluated at baseline and days 1, 7, 15, and 30 of OK treatment. Light distortion was determined using an experimental prototype. Corneal aberrations were derived from corneal topography for different pupil sizes. Contrast sensitivity function (CSF) was analyzed for frequencies of 1.50, 2.12, 3.00, 4.24, 6.00, 8.49, 12.00, 16.97, and 24.00 cpd under photopic conditions. Results. Average monocular values of all light di…

Refractive errormedicine.medical_specialtyArticle Subjectgenetic structuresmedia_common.quotation_subjectmedicine.medical_treatmentLentes de contactolcsh:Medicine01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyPupil010309 optics03 medical and health sciences0302 clinical medicineDistortionCorneaOphthalmology0103 physical sciencesMedicineContrast (vision)media_commonÓpticaScience & TechnologyGeneral Immunology and Microbiologymedicine.diagnostic_testbusiness.industrylcsh:ROrthokeratologyGeneral Medicinemedicine.diseaseCorneal topographyeye diseasesmedicine.anatomical_structure030221 ophthalmology & optometrysense organsbusinessPhotopic visionResearch ArticleBioMed Research International
researchProduct

Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

2021

Abstract Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci ass…

AgingMultifactorial InheritanceBLOODEpigenetic clock05 Environmental SciencesbiomarkkeritGenome-wide association studyQH426-470Epigenesis Genetic/dk/atira/pure/core/keywords/icep0302 clinical medicineBiomarkers of agingGWASBiology (General)AdiposityGenetics11832 Microbiology and virology0303 health sciences318 Medical biotechnologyDNA methylation1184 Genetics developmental biology physiologygenomiikkaDna Methylation ; Epigenetic Clock ; Gwasddc:DNA-metylaatioINSIGHTSC-Reactive ProteinepigenetiikkaDNA methylationMENDELIAN RANDOMIZATION/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingEducational StatusICEPGenetic MarkersPROVIDESSUSCEPTIBILITY LOCIBioinformaticsQH301-705.5GenomicsBiology03 medical and health sciencesNHLBI Trans-Omics for Precision Medicine (TOPMed) ConsortiumAGESDG 3 - Good Health and Well-beingPlasminogen Activator Inhibitor 1REGRESSIONGeneticsHumansEpigeneticsGeneMETAANALYSIS030304 developmental biologyGenome HumanResearchGenetics of DNA Methylation Consortium06 Biological SciencesLipid MetabolismHuman geneticsGenetic architectureImmunity InnateikääntyminenGenetic LociCpG Islands08 Information and Computing Sciences3111 BiomedicineENRICHMENTepigenetic clock030217 neurology & neurosurgeryBiomarkersGenome-Wide Association StudyGranulocytes
researchProduct

SiRNA-mediated selective inhibition of mutant keratin mRNAs responsible for the skin disorder pachyonychia congenita.

2006

RNA interference offers a novel approach for treating genetic disorders including the rare monogenic skin disorder pachyonychia congenita (PC). PC is caused by mutations in keratin 6a (K6a), K6b, K16, and K17 genes, including small deletions and single nucleotide changes. Transfection experiments of a fusion gene consisting of K6a and a yellow fluorescent reporter (YFP) resulted in normal keratin filament formation in transfected cells as assayed by fluorescence microscopy. Similar constructs containing a single nucleotide change (N171K) or a three-nucleotide deletion (N171del) showed keratin aggregate formation. Mutant-specific small inhibitory RNAs (siRNAs) effectively targeted these site…

Small interfering RNABiologymedicine.disease_causeTransfectionGeneral Biochemistry Genetics and Molecular BiologyFusion geneHistory and Philosophy of ScienceCell Line TumorKeratinmedicinePachyonychia congenitaHumansRNA MessengerRNA Small Interferingchemistry.chemical_classificationMutationKeratin Filamentintegumentary systemGeneral NeuroscienceGenetic Diseases InbornKeratin-6RNAKeratin 6Amedicine.diseaseMolecular biologychemistryPachyonychia CongenitaMutationMutagenesis Site-DirectedKeratinsDimerizationAnnals of the New York Academy of Sciences
researchProduct

4,4,4′,4′,7,7′-Hexamethyl-2,2′-spirobichroman

2000

The title compound, C23H28O2, was obtained from the reaction of acetone with meta-cresol. The molecular structure consists of two identical subunits which are nearly perpendicular to each other. The oxygen-containing rings are not planar and the molecule is chiral. The crystal structure consists of chains of molecules of the same chirality arranged along the [010] axis.

CrystallographyPlanarBicyclic moleculeChemistryPerpendicularMoleculeGeneral MedicineCrystal structurePhysics::Chemical PhysicsChirality (chemistry)General Biochemistry Genetics and Molecular BiologyActa Crystallographica Section C Crystal Structure Communications
researchProduct

miR-155 inhibition sensitizes CD4+ Th cells for TREG mediated suppression.

2009

BackgroundIn humans and mice naturally occurring CD4(+)CD25(+) regulatory T cells (nTregs) are a thymus-derived subset of T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.Principal findingsDNA-Microarray analyses of human as well as murine conventional CD4(+) Th cells and nTregs revealed a strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression in FoxP3-deficient scurfy mice …

CD4-Positive T-LymphocytesScienceImmunology/ImmunomodulationBiologyModels BiologicalT-Lymphocytes RegulatoryImmune tolerancemiR-155MiceDownregulation and upregulationImmune ToleranceAnimalsHumansIL-2 receptorOligonucleotide Array Sequence AnalysisMultidisciplinaryInnate immune systemGenetics and Genomics/Functional GenomicsQInterleukin-2 Receptor alpha SubunitRPeripheral toleranceFOXP3Forkhead Transcription FactorsTransfectionImmunity InnateCell biologyUp-RegulationKineticsMicroRNAsImmunologyImmunology/Immune ResponseMedicineGenetics and Genomics/Genetics of the Immune SystemResearch ArticlePLoS ONE
researchProduct